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The nonsymmetric-nonabelian Kaluza-Klein theory 

M W Kalinowskit 
Department of Physics, University of Toronto, Toronto, Ontario. Canada M5S 1A7 

Received 9 August 1982, in final form 23 December 1983 

Abstract. This paper is devoted to an in &4)-dimensional unification of Moffat's theory 
of gravitation and Yang-Mills field theory with nonabelian gauge group G. We found 
'interference effects' between gravitational and Yang-Mills (gauge) fields which appear 
to be due to the skewsymmetric part of the metric of Moffat's theory and the skewsymmetric 
part of the metric on the group G. Our unification, called the nonsymmetric-nonabelian 
Kaluza-Klein theory, becomes classical Kaluza-Klein theory if the skewsymmetric parts 
of both metrics are zero. 

1. Introduction 

The aim of this paper is to find the Kaluza-Klein analogue for Moffat's theory of 
gravitation (Moffat 1979,1981,1982a). In other words it will be an ( n  +4)-dimensional 
unification of Moff at's theory of gravitation and a nonabelian gauge theory (Yang-Mills 
field theory, n =dim G, where G is a gauge group). Our unification called the 
nonsymmetric-nonabelian Kaluza-Klein theory is analogous to the relation between 
Moffat's theory and general relativity. The diagram (figure 1) places our unification 
among the above mentioned theories. 

Roughly speaking, in the general theory of relativity, mass curves space-time. In 
Moffat's theory of gravitation, mass and fermion charge (fermion number) curve and 
twist space-time. In classical (nonabelian) Kaluza-Klein theory, mass curves space- 
time, and colour (isotopic) charges curve the additional n dimensions. In the nonsym- 
metric-nonabelian Kaluza-Klein theory, mass and fermion number curve and twist 
space-time, and colour (isotopic) charges curve and twist the additional n dimensions. 

Moffat's theory of gravitation is based on three fundamental geometrical quantities: 
two connections F &  and w& and the nonsymmetric metric gap. This nonsymmetric 
metric is equivalent to the existence of two geometrical objects defined on space-time: 
the symmetric metric tensor 

g = g ( a p , P  @eP 
and the 2-form 

g = gLgu]qg A e". 
In the general theory of relativity we have only one connection with vanishing torsion 
and a symmetric metric on space-time. Thus we have only T and g .  Of course in 
Moff at's theory connections and are interrelated and have nonvanishing torsion. 

f On leave of absence from the Institute of Philosophy and Sociology of Polish Academy of Sciences, 
00-330 Warsaw Nowy Swiat 7 2 ,  Poland. 
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Figure 1. The position of the nonsymmetric-nonabelian Kaluza-Klein theory in general 
relativity, the nonsymmetric theory of gravitation and the classical nonabelian Kaluza- 
Klein theory. Abbreviations: GRT, general theory of relativity; NGT, nonsymmetric theory 
of gravitation ibloffat’s theory, real version); NKK, nonabelian Kaluza-Klein theory; 
NNKK, nonsymmetric-nonabelian Kaluza-Klein theory. 

The classical Kaluza-Klein approach and its generalisation to nonabelian gauge 
groups (Cho 1975, Kaluza 1921, Lichnerowicz 1955b, Kerner 1968, Rayski 1965, 
Kalinowski 1981, 1983) was based on the following ideas. 

On the space-time we have Riemannian geometry based on the metric tensor g 
and we have general relativity with the local coordinate invariance principle. Simuc 
taneously, we have a principal fibre bundle over space-time with the structural group 
G (in the electromagnetic case U(1)). The connection on this bundle describes the 
Yang-Mills field (gauge field). We have also the local gauge invariance principle for 
the Yang-Mills fields (or for the electromagnetic field in the case if G = U(1)). 

The local coordinate invariance principle and the local gauge invariance principle 
seem to be two major concepts of physics. The first is basic for general relativity and 
other alternative theories of gravitation such as Einstein-Cartan theory, Brans-Dicke 
theory etc. The local coordinate invariance principle is also basic in Moffat’s theory 
of gravitation. The second one, the local gauge invariance principle, is fundamental 
for electrodynamics. The first was introduced by A Einstein and the second by H 
Weyl. Now we know the principle of local gauge invariance is fundamental also for 
weak and strong interactions (Weinberg-Salam model and quantum chromodynamics), 
but the gauge groups are nonabelian. In the grand unified theories based on some 
nonabelian groups, the local gauge invariance principle also plays the fundamental role. 

The Kaluza-Klein theory unifies these two concepts and reduces them to the first, 
the local coordinate invariance principle, but in a more than four-dimensional world. 
In the electromagnetic case we deal with a five-dimensional manifold. In general we 
deal with an ( n  +4)-dimensional manifold for an arbitrary gauge group, where n = 
dim G. 

The basic idea is very simple. On the gauge group we have a bi-invariant tensor 
(for example the Cartan-Killing tensor). This tensor plays the role of a metric in the 
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Lie algebra of the gauge group G (normally it is supposed that G is semisimple). In 
the abelian five-dimensional case we have as this tensor the number (-1). 

On the fibre bundle we have the natural distribution of horizontal spaces induced 
by the connection. The metric tensor g acts on space-time. 

We can divide every tangent vector to the fibre bundle in only one way (the 
connection is established) into two parts-horizontal and vertical. The horizontal part 
we can project onto space-time and the vertical one, due to the connection, onto the 
Lie algebra of the gauge group. Thus we have natural (symmetric) metrisation of the 
fibre bundle. We can ‘measure’ independently the length of both parts by two 
(symmetric) metric tensors and then add these two results. The procedure is similar 
in spirit to Pythagoras’s theorem. This construction was first introduced by Trautman 
(1970). Having the principle bundle metrised in a natural way (the metric tensor is 
bi-invariant with respect to the gauge group action on the bundle) we introduce linear 
connections on the bundle (i.e. connections on the bundle of linear frames over the 
previous principal bundle) which are compatible in some sense with the metric. The 
simplest solution is to suppose that this connection is the Levi-Civita connection as 
in the five-dimensional Kaluza-Klein theory. If we calculate the Ricci curvature scalar 
for this connection we get a sum of the Ricci curvature scalar on space-time and the 
electromagnetic Lagrangian. In the non-abelian case, (n  + 4)- dimensional, the result 
will be more complex; we get a sum of the Ricci curvature scalar on space-time, the 
Yang-Mills Lagrangian plus the cosmological constant which is times bigger 
than the upper limit from observational data. This makes us change geometry on the 
metrised fibre bundle, and abandon the Levi-Civita (Riemannian) connection. We 
must employ the connection with torsion. This was done in a natural geometrical way 
by Kalinowski (1983); the cosmological constant vanishes (it is almost zero from 
observational data). In the light of the new observational data concerning the 
quadrupole moment of mass for the sun (see Hill er a1 1982) it seems that the 
general theory of relativity is unable to explain the perihelion movement of Mercury 
and Icarus. 

Moffat’s theory can explain observational data (see Moffat 1982b, 1983). Moffat’s 
theory due to using fermion current (fermion number F = B - L, B-baryon charge, 
L-lepton charge) as a second gravitational charge (the first is the mass) seems to be 
closer to elementary particle theory than general relativity. The fermion charge is 
conserved in Moffat’s theory. In the grand unified theory (see Langacker 1981) based 
on SO(lO), fermion number (fermion charge) is one of the generators of the Lie 
algebra of SO(10). 

Thus it would appear to be important to find the Kaluza-Klein analogue for 
Moff at’s theory in the general nonabelian case in order to carry out further investiga- 
tions. 

This theory, the nonsymmetric-nonabelian Kaluza-Klein theory, unifies the coor- 
dinate invariance principle from Moff at’s theory and the local gauge invariance 
principle for Yang-Mills (gauge) fields. 

Following ideas concerning the geometry of the Kaluza-Klein theory described 
above, it is necessary to find the natural nonsymmetric metrisation of the fibre bundle 
over space-time. The existence of such a nonsymmetric metric on the fibre bundle 
is equivalent to the existence of two bi-invariant geometrical objects 7 and y. The 
first 7 is a symmetric bi-invariant tensor and the second y is a bi-invariant 2-form 
on the fibre bundle. The first is constructed and used in ihe classical Kaluza-Klein 
theory (natural symmetric metrisation). It is necessary to construct the second one. 
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Following the basic idea of the previous construction it is necessary to choose a 
bi-invariant skewsymmetric form on the gauge group G. We have a natural skewsym- 
metric form defined on the Lie algebra of the group. It is the commutator. This form 
has values in the Lie algebra of the group. But the inner product of this form and 
the vector C = hab Tr[(X,)*lXb (trace with respect to the space of the generator 
representation) is a number. If the representation is real we have what we were 
looking for. The form is bi-invariant with respect to the group action. Unfortunately 
this form is often zero. For example it is zero for U(1). 

Now following the idea of the symmetric metrisation of the fibre bundle we can 
build y from g and the above form. If the form is zero y = .rr*(g), where .rr* is 
a pull-back of (the natural projection on the fibre bundle). This is inthe electromag- 
netic case and it was done in Kalinowski (1982). 

The nonsymmetric-nonabelian Kaluza-Klein theory seems to be a real unified 
theory of Yang-Mills and gravitational fields. It not only reduces two major principles 
of invariance to the local coordinate invariance principle, but it provides new effects, 
which are absent in the classical Kaluza-Klein theory. These effects are also absent 
in Moffat's theory of gravitation and in Yang-Mills theory and are thus 'interference 
effects' between gravitational and Yang-Mills fields. They are as follows. 

(i)  The new term in the Yang-Mills Lagrangian 

(ii) The change in the classical part of the Yang-Mills Lagrangian in replacing 
h,b by 

l ab  = h a b  -+ PKab. 

(iii) The existence of a Yang-Mills field polarisation of the vacuum, Maap.  
(iv) The additional term in the Kerner-Wong equation (equation of motion for 

the test particle in the gravitational and Yang-Mills fields) 

where mo is a rest mass of a test particle and q b  is its colour (isotopic) charge. 

for large g 
(v) The existence of the cosmological constant p ( p )  with asymptotic behaviour 

p ( p  - constant/@ *, 

(vi) The new energy-momentum tensor Too with zero trace. 
(vii) Sources for Yang-Mills fields, the current j " " .  
All of these effects vanish if the metric of f' (gbre bundle) becomes symmetric. 

In this. case we get the classical symmetric nonabelian Kaluza-Klein theory. 
The paper is organised as follows. In § 2 we introduce the notations and definitions 

of all geometrical quantities which we use throughout the paper. In § 3 we define the 
natural nonsymmetric metrisation of the principal fibre bundle. In § 4 we formulate 
the nonsymmetric-nonabelian Kaluza-Klein theory. In § 5 we write down the geodesic 
equation on P (nonsymmetrically metrised fibre bundle) and we find a new correction 
for the Kerner-Wong equation. We calculate connections w A B  and W A s  which are 
analogous to connections 6 u p  and wap. In § 6 we calculate the 2-form of torsion and 
the 2-form of curvature for the connection wAB.  After this we write the curvature 
tensor for w A B  and the Moffat-Ricci curvature scalar for w A B .  Using the results 

gauge 
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obtained we calculate the Moffat-Ricci curvature scalar for the connection W A B .  In 
§ 7 we deal with the connection Gab defined on the fibre and with cosmological constant 
which is the Moffat-Ricci curvature scalar for Gab. We find the asymptotic properties 
of the cosmological constant for very large p.  In Q 8 we define the Palatini variational 
principle for the Moffat-Ricci curvature scalar R ( W )  and obtain field equations for 
gravitational and Yang-Mills fields. We discuss and interpret our results and point 
out all the differences between the classical and the nonsymmetric-nonabelian Kaluza- 
Klein theory. We write down all ‘interference effects’ between gravitational and 
Yang-Mills fields which appear in our theory. In § 9 we deal with some special cases 
of our theory. 

2. Elements of geometry 

In this section we introduce the notations and defiqe geometric quantities used in the 
paper. We use a smooth principal fibre bundle P, which includes in its definition the 
following list of differentiable manifolds and smooth maps: 

a total (bundle) space r, 
a base E ;  in our case it is a space-time, 
a projection X :  P + E, 
a map @ : P x G - P  defining the action of G on P ;  if a , b E G  and E E G  is the 
unit element then @ ( a ) o @ ( b )  = O(ba) and @ ( E )  = i d  and O ( a ) p  = @ ( p ,  a ) ,  
moreover X O @ ( U )  = X. w is a 1-form of a connection on P with values in the Lie 
algebra of the group G. 

Let @‘(a)  be the tangent map to @(a) whereas @*(a)  is contragredient to @(a)  at the 
point a. The form w is a form of ad-type i.e.: 

@*(a)w = ad:-lw 

where ad;-1 is the tangent map to the internal automorphism of the group G and 
ad,(b j = aba-’. Due to the form w we can introduce the distribution field of linear 
elements H,, r E P, where H, c Tr(P)  is a subspace of the space tangent to P at a 
point r and 

(2.2) U E Hr e w ( U  ) = 0. 

We have 

where H, is called a subspace of horizontal vectors and V, of vertical vectors. For 
vertical vectors U E Vr we have x ‘ (u )  = 0. This means that U is tangent to fibres. Let 
us define 

c = hor(v)+ver(u),  hor(u)EH,, ver(c)E V,. (2.4) 

It is well known that the distribution H,  is equivalent to a choice of the connection 
w.  We use the operation ‘hor’ for forms, i.e. 

(hor p ) ( X ,  Y )  = P(hor X ,  hor Y )  

where X ,  Y E  Tr(P).  The 2-form of curvature of the connection w is: 

a =  hor dw. (2.6) 



1674 M W Kalinowski 

I v  \ 
I 
I 
I 

It is also a form of ad-type like w .  R obeys the structural Cartan equation 

R=dw+$[w,w] (2.7) 

where [w ,  w ] ( X ,  Y )  = [ w ( X ) ,  w (  Y ) ] .  Bianchi’s identity for w is 

hor dR = 0. (2.8) 

For the principal fibre bundle we use the following convenient scheme (figure 2). The 
map e :  U + P,  U c E,  so that e or = id is called a local section. From the physical 

I 
I 
I /  \ / w  

\\ I 
1 

// 
\\ I / \\ // 

I ,/ \‘ 
\ I  

point of view it means choosing the gauge. Thus 

e*w = e * ( w a X a )  =A“,e”X, 

e*R = e*(R“Xa) = $FE,g” A e’X,. 

T I  I /  

I 
I I 

I 

/ 

Figure 2. Principal fibre bundle P. 

(2.9) 

G 

Further we introduce a notation 

f l a = i H a , , ~ ’  A B ”  

where 0” = r*(8’”), e” is a basis on E, r* is contragredient to r and 

F ; ~  = a,~“, -a&“, +c&A:A‘,, 
are generators of the Lie algebra of the group G and 

Xa, a = 1 , 2 . .  .d im G = n  

[Xaj Xb 1 = C ‘ a Z c .  

(2.10) 

In this paper we also use a classical linear connection on manifolds f and E using 
the formalism of differential forms. So the basic quantity is a 1-form of connection 
w A B  (coefficients of the connection). The 2-form of curvature is the following 

(2.11) A A C RAB=dw B + w  c ~ w  

and the 2-form of torsion 

B A  = DOA (2.12) 
where B A  are basic forms, D means the exterior covariant derivative with respect to 
w The following relations define the interrelation between our symbols and the 
generally used ones 

(2.13) 

A 

OA = iQAsCBB A Oc, nAB = + R ~ ~ ~ ~ o ~  A eD,  A A C  B = r  Bco , 
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where rABc are coefficients of the connection (they do not have to be symmetric in 
indices B and C), R A g c ~  is a tensor of curvature and QABC is a tensor of torsion. 
Covariant exterior differentiation with respect to w A B  is given by the formulae 

(2.14) 

The form of curvature RAB and torsion OA obey Bianchi’s identities 

D R * ~  = 0 ,  DOA = RAB A OB. (2.15) 

In the paper we also use Einstein’s + and - differentiations for the nonsymmetric 
metric tensor gAg 

DgA+B- = DgAB -gADQDBceC (2.16) 

where D is the covariant exterior derivative with respect to uAB and QDBC is the 
tensor of torsion for wAB. In a holonomic system of coordinates we easily get: 

(2.17) 

All quantities introduced in this section and their precise definitions can be found in 
Trautman (1970), Kobayashi and Nomizu (1963), Lichnerowicz (1955a) and Einstein 
(1953). 

D D C  DgA+B-=gA+B-:CeC = (gAB,C-gDBrAC-gADrCB)8 

3. The natural nonsymmetric metrisation of a bundle P 

Let us introduce the principal fibre bundle P over the space-time E with the structural 
group G and with the projection T.  Let us suppose that (E, g)  is a manifold with 
nonsymmetric metric tensor 

(3.1) - gFY - g(F”) + g[LLYl. 
Let us introduce a horizontal lift basis on P. 

e A  = (T* (@) ,  8“ = A W = ) ,  A =constant. (3.2) 
It is convenient to introduce the following notations. Capital indices A,  B, C, run 
1 ,2 ,3 ,  . . . , n +4,  n = dim G. Lower case greek indices a, p, y, S = 1 , 2 , 3 , 4  and lower 
case latin a,  b, c,  d = 5, 6 .  . . n +4 .  An overbar above 8” and other quantities indi- 
cates that they are defined on E. 

It is easy to see that the existence of the nonsymmetric metric on E is equivalent 
to introducing two independent geometrical quantities on E 

(3.3) 

(3.4) 
i.e. the symmetric metric tensor g on E and the 2-form g. On the group G we can 
introduce a bi-invariant symmetric tensor called the Killin-g-Cartan tensor 

h (A, B )  = Tr(AdA OAds) (3.5) 

h ( A , B ) = h , d ”  - B b  (3.6) 

where A ~ A ( C )  = [A, C]. It is easy to see that 
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where hob = CcadCdbc, hob = hba, A = A"X,, B = Baxa. This tensor is distinguished by 
the group structure, but there are of course other bi-invariant tensors on G. Normally 
it is supposed that G is semisimple. It means that det(hab) f 0. What is a natural 
2-form on G, or a natural skewsymmetric bi-invariant tensor? It is easy to see that 

(3.7) K ( A ,  B )  = h([A, Bl, C ) ,  

K(A,  B )  =KbcAb * B' 

c = h a h  Tr[(X,)')Xb 

has these properties and 

(3.8) 

where 

Kbc = C a b c  ' Tr[(X,)'], Kbc = -Kc.. 
Trace (Tr) is here understood in the sense of the representation space of generators 
X,. If the representation is a real, then K is a real too. The tensor K is zero in the 
following two important cases: (a) G is abelian; (b) A. Tr[(Xo)2] = 0. Thus K is zero 
for U(1). Let us turn to the nonsymmetric natural metrisation of p.  Let us suppose 
that: 

y(x, Y ) = g ( ~ ' x ,  .Ir'Y)+A*h(W(X),W(Y)) (3.9) 

y ( x ,  Y) = g ( H ' x ,  77' Y) +/.LA ' K ( W  (x), W ( Y ) )  (3.10) 

/.L =constant and is dimensionless, X, Y E tan(P). The first equation (3.9) was intro- 
duced by Trautman (1970) for the symmetric natural metrisation of and was used 
to construct the Kaluza-Klein theory for U(1) and nonabelian generalisations of this 
theory (Kerner 1968, Cho 1975 and Kalinowski 1983). It is easy to see that 

7 = H *g h a b o a  @ e b  (3.11) 

= H * g  +@Kabea A (3.12) 

or 

For 

YAB = Y ( A B J + Y [ A B ]  

one easily gets 

(3.13) 

(3.14) 

(3.15) 

where lob = hob + / . L K ~ ~ .  Tensor YAB has this simple form in the natural frame on P,  
eA. This frame is unholonomical, because: 

(3.16) dea  = (h/2)[Ha,,8" A 8" - ( l / h 2 ) C a b c e b  A e ' ]  # 0.  

We also introduce a dual frame 

(3.17) B y ( 6 A )  = Y(AB,@ ' 
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(3.18) 

(3.19) 

Thus y is bi-invariant with respect to the group action on P (ea are of course 
fundamental fields on P ) .  In the case with Tr[(Xa)I2 = 0 for every a we have 

For the electromagnetic case (G = U( 1)) one easily finds 

(3.20) 

(3.21) 

Now let us take a section e :  E +f‘ and fit to it a frame Qa, a = 5 , 6  . . . n +4,  selecting 
X” = constant on a fibre in such a way that e is given by the condition 

e*@‘ = 0. 

Thus we have 

w = ( l / h )@“X,  +.rr*(AZJw)X, 

where 

e *w  = A = A “,i”Xa. 

In this frame the tensor y takes the form 

(3.22) 

where 

This frame is also unholonomic. One easily finds 

dQa = -(1/2A)CabcQb A QC. (3.23) 

The nonsymmetric theory of gravitation (see Moffat 1979, 1981, 1982a) uses the 
nonsymmetric metric g,, such that 

g ,U g,,gUP = 8: (3.24) 

where the order of indices is important. If G is semi-simple and Tr[(X,)J2=0 for 
every a 

(3.25) 

(3 .26 )  
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where the order of indices is important. We will have the same for the electromagnetic 
case (G = U(1)). In general if det(lab) # 0 then 

lablac = lbalca = 8; (3.27) 

where the order of indices is important. From (3.15) we have (3.26) for the general 
nonsymmetric metric y. 

4. Formulation of the nonsymmetric Kaluza-Klein theory 

Let P be the principal fibre bundle with the structural group G, over space-time E 
with a projection 7~ and let us define on this bundle a connection w .  Let us suppose 
that G is semisimple and that its Lie algebra g has a real representation such as 
Tr[(X,)'] which is not equal to zero for every a. Tr is understood here in the sense 
of the representation space of the Lie algebra g. On space-time E we define a 
nonsymmetric metric tensor such that: 

where the order of indices is important. We define also on E coefficients of two 
connections 

and 
2 a -  wap = W a p y P ,  Ivap = G a p  -$pW (4.3) 

where 
w = wyp = $( @Uyu - wuuy)p, 

bgatp- = Ggap - g a 8 a ; , c F ) e y  =o, &(F) = 0 (4.4) 

For the connection form G a p  we suppose the following conditions 

where b is the exterior covariant derivative with respect to G a p  and o;y(r) is the 
torsion of Gap.  Thus we have on space-time E, all quantities from Moffat's theory 
of gravitation (see Moffat 1979, 1981, 1982a). Now let us turn to the natural 
nonsymmetric metrisation of the bundle P. According to 8 3 we have 

7 = =*E + hoben @eb = 7T*(g(ap,@ 08') + habell @ e b  
Y=r*g+pKabea  A6b=7T*(g[apl@ A@)+pKab6" A B b  (4.5) 

where 6" = ha. &om the classical Kaluza-Klein theory (with symmetric metric) we 
know that A =2JG/c2 (see Cho 1975). We work with such a system of units that 
G = c  = 1 and A = 2 .  

(4.6) 

where 
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Let us suppose that det(lab)#O. Now we define on P, a connection w A B  invariant 
with respect to the group action on P such that 

DYA+B-=DYAB - ' ) 'ADQDBC(r )eC  = o  (4.7) 

where w A B  = rABceC and D is the exterior covariant derivative with respect to the 
connection w A B  (see equation (2.16)) and Q D B C ( r )  is the tensor of torsion for the 
connection U AB. After some calculations one gets 

r" P Y -  Pv, r ; b =  -ldbg"'L,dy 

r~v=-iadg'P(Ldyp+2H~v) 

r&= L&, r2c= -g,,labN:b 
1 rep= -gP~labNP,,, r z b  = N % ,  rgc = Fgc 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

5. Geodetic equations 

Let us write an equation for geodesics with respect to the connection w A B  on P.  

UBVBUA = o  ( 5 . 1 )  

where UA( t )  is a tangent vector to the geodesic line and V means covariant derivative 
with respect to the connection w A B .  Using (4.8) one easily finds: 

BUP/d t  - Ub(21bdgQPH& (lbdgapLdyp + ~dbgp"L$,))~'  + ubucNrb = 0 

d U a / d t +  u P u p L : p -  U*Uc(gpplbaN~c +gpplabNzb)+ ubUCp$=O 

(5 .2)  

(5.3) 

where B/d t  means covariant derivative with respect to ( s a P  along the line to which 
W ( t )  is tangent. In the symmetric Kaluza-Klein theory (see Kerner 1968, Kopczynski 
1980) 2Ub has the interpretation of (qb/mo) for a test particle (4' is colour charge or 
isotopic charge of the test particle) and the system of equations ( 5 . 1 )  and (5 .2 )  has 
first integral Ub = constant. In our case it is possible iff 

LZp = -La P P  (5.4) 

gp,lba Ngc + gpplabNzb = 0 (5 .5)  
(5 .6)  FZb = - F a  bc* 

Nzb = 0. (5.7) 

Using ( 5 . 5 )  and (4.10) one gets 



(5.10) is called the Wong (see Kerner 1968 and Kopczynski 1980) equation in the 
case of G = SU(2) and contains the Lorentz force term for the Yang-Mills fields. 
From the historical point of view this equation should be called the Kerner equation 
because it  appeared for the first time in Kerner's paper (1968) in curved space-time 
for an arbitrary semisimple gauge group. Thus in the first equation of (5.9) we 
obtained a Lorentz-like force term in the case of the nonsymmetric metric for an 
arbitrary gauge field. This term really differs from the analogous term in the symmetric 
Kaluza-Klein theory, but if the metric is symmetric we get the classical Kerner-Wong 
equation. 

6. Geometry of the manifold P 

Thus we have on P all (n +4)-dimensional analogues of quantities from Moffat's 
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theory of gravitation i.e. W A B ,  w A B  and Y A B .  In this nonabelian, general case we 
have also the connection on a typical fibre ;‘b. This connection satisfies compatibility 
conditions for the nonsymmetric metric lab and is invariant with respect to the action 
of the group G. The last means that in the natural frame on P F:c is constant. The 
connection G a b  is analogous to the connection Gap on space-time E. Thus we suppose 
that 

d&(f) = 0 (6.5) 

where d“b,(f) is a tensor of torsion for the connection G a b  (cf the second equation 
of (4.4)). One easily finds that (6.5) is equivalent to 

= 0. (6.6) 

Let us turn to calculation of a torsion for w A B .  

oA(r) = mA. 
One easily gets 

(6.9) 
(6.10) 

(6.11) 

where d&(r) is the tensor of torsion for the connection Gag and d:,(r) is the tensor 
of torsion for the connection & E .  

Let us define the ad-type tensor on P, K:,, such that 

Lzy  = H z v  + K I Y .  (6.12) 

We have 

Qz,(r) = -2Kz,. (6.13) 

We will find the physical interpretation of this tensor. Let us turn to the calculation 
of the 2-form of curvature for uAB. 

(6.14) A A C f l A s ( r ) = d w  B + w  c A W  B. 

After some calculations one finds using (6.1) 

n;(r) = fi;(T)+[1degap(2Hz[Y -L:[y)L%]p -lbdg*QL$H&] 
gauge 

xBy A 8” - Vp[lbdg*’”L$]8” A ob  +1d[b1i.icg*ag”6L:’,L~p8b A 8“ 
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n:(r) = i2;(F) + i b f g  86 L ~ ~ , ( ~ H ' , ~ ,  a -&ay A ep  (6.15d) 

where fiz(r) is the 2-form of curvaturEalgr the connection W U p ,  h;@) is the 2-form 
of curvature for the connection 2;. v,, means 'gauge' derivaJive and generally 
covariant derivative with respect to the connection W U p  at once. v b  means covariant 
derivative with respect to the connection (;: on a typical fibre. d;,(r) is the tensor 
of torsion for the connection Gap. One easily finds using the third equation of (2.13) 
the tensor of curvature for w A B  from (6.15a-d). 

Repyu(I') =E&,,(p) +2[1d&"P(2Hi[y -Li[y)Lt]p - l b & F u L $ H ~ V ]  (6.16a)  

(6 .15b)  

( 6 . 1 6 ~ )  

(6.16g) 

(6 .16h)  

(6.16i) 

(6.16j) 

Let us turn to calculations of the Moffat-Ricci tensor for uAB and the Moffat-Ricci 
curvature scalar. We have 

RBC (r) = R A B c A ( r )  + $R A ~ ~ c  (r) (6.17) 

(see for example Moffat 1982). Thus we have 

(6.18) 

(6.19) 

(6.20) 

After some calculations one finds 

R (r) = R (r) + 8 (f) - f a ,  (2H" H b  - Lal ruH~,  ) (6.21) 

where R(r)  is the Moffat-Ricci curvature scalar for the connection W u p ,  R ( f )  is the 
Moff at-Ricci curvature scalar for the connection 3 ab, 

(6.22) 

(6.23) 

(6.24) 
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Now we pass to calculation of the Moffat-Ricci curvature scalar for WAB.  It is very 
easy to see that 

(6.25) R ( W )  = R (  W )  +d (F)- lab(2Ha ' H b  -LafiuH:,)  

where I?(@) is the Moffat-Ricci curvature scalar for the connection Wap.  

7. The connection Gab : cosmological constant 

Let us turn to the calculation of the Moffat-Ricci curvature scalar for the connection 
G a b :  &(f). One can find using (6.3) and (6.6) 

(7.1) b d ' a '  1 b d ' a  d(F) = I rcdr;a-2i rbcCCda 

and using (6.3) and (6.6) one finally gets 
d(F)= -hp& ac 1 r f ' p  rc,f;a 

where f;c satisfies compatibility conditions 

(7.2) 

It is easy to see that R ( f )  is a rational function of p. But it is a very difficult task to 
find the exact dependence on p. Therefore, we have not an exact solution of (7.3) 
and (7.4), but we can find an asymptotic dependence for very large F .  If p +CO (7.3) 
becomes 

(7.5) K d b  f tc + Kad F $ ,  = iKadc tc. 
Thus in the limit of very large p,  F & ( p )  goes to the constant fZc with respect to p.  
On the other hand we have 

lab  = A a b / A  (7.6) 
where A = det(lab) and Aab is a cofactor matrix formed from lab,  It is easy to see that 
A is a polynomial of nth order with respect to p and hub a polynomial of ( n  - 1)th 
order with respect to p.  Thus finally we get for very large p 

d(f) = -hpbAaCArfF$;a/A2 - constant/p2. (7.7) 

If F is sufficiently large, d(F) is as small as we want. It is very important, because 
in the classical (symmetric) Kaluza-Klein theory d (f) plays the role of the cosmological 
constant. This cosmological constant is lo'*' bigger than the upper limit from observa- 
tional data. Now we are able to make the cosmological constant as small as we need. 
In this way we get the physical interpretation of dimensionless parameter p and some 
limits imposed on it 

/,..I B 1 0 ~ ~ .  (7.8) 
Maybe it is possible to find an exact solution of (7.3) and (7.4). In this way we get 

d(f) = P m  (F ) / Q m + ~ b )  (7.9) 

where P, and Qm+2 are some polynomials with respect to p of order m and ( m  + 2 ) .  
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If the polynomial Pm(p) has a real root po we have 

E(?)  = 0 

If we suppose that F L b  has a potential 

for p = p o .  

such that 

Ff = A o b  = dsf  = d(zf&) (7.10) 

(d means here the vertical part of d ,  dZf = d3’-  hor d E f ,  and 55, is constant in the 
frame e ‘ ) ,  We can transform (7.3) into 

z : , d ( l d b C : c  + l a d c : b )  = - 1 a d c ; c  (7.11) 

and we have 
‘ f  - - L - f c d  
r m n -  2 1 d  mn. 

It is easy to see that 

FLn = - F L  

(7.12) 

(7.13) 

and from the second equation of (7.4) we get: 

=f - d C f m  d = o  . (7.14) 

In the terms of the potential Z:fd the Moffat-Ricci curvature scalar turns into: 

(F) = - ahpb ( /acc:r/rfcz )( i), (7.15) 

If the metric lab is symmetric, one easily finds from (7.11) 

(7.16) = d -  1 d 
- e  - -58,. 

Unfortunately the general solution in the nonsymmetric case is unknown. 

8. The variational principle and field equations. Interpretations and conclusions 

Let us define the Palatini variational principle on the manifold P for R ( W )  

S R ( W ) d r  dni4X = 0, V C P  (8.1) 
V 

where y = det(yAB) = det(gQp) det(lab) = g * A. We vary with respect to independent 
quantities: gap, Wi7 and ma. After simple calculations one gets 
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gauge 

V, means gauge derivative 

and 

p = p ( / . L ) = & d t ( F ) .  (8.9) 

The equations (8.2) and (8.3) are equations for the gravitational field in the presence 

of Yang-Mills field (gauge) sources. Tap plays the role of an energy-momentum 
tensor for the gauge (Yang-Mills) field. Equation (8.4) is a compatibility condition 
for the metric on space-time (see (4.4)). Equation (8.5) plays the role of the second 
Yang-Mills equation. It is easy to see that 

gauge 

(8.10) 

Now we are able to interpret all quantities in our theory. First of all it is easy to see 
that Lzp plays the role of the second tensor of the Yang-Mills field (gauge) strength 
and (equation (8.8)) expresses the relationship between both tensors HZP and L& 

In the electromagnetic case (G = U(1)) we have the tensors Fap and Hap (see 
Kalinowski 1982) which are the first and second tensors of electromagnetic strength. 

In the classical electrodynamics of continuous media (de Groot et a1 1972) or in 
nonlinear electrodynamics (Plebahski 1970) it is necessary to define both of these 
tensors. The first tensor Fa@ is built from (E, B ) ,  the second from (D, H ) .  

Here we build HZB from ( E ” , B “ )  and LZ6 from ( D “ , H “ ) .  For example in 
quantum chromodynamics we have D” (Nielsen and Patkos 1982). The vacuum 
behaves as a dielectric for gluon fields. If the metrics gas and lab are symmetric, 
H:@ = L:@. Thus it is interesting that the skewsymmetric part of the metric 
induces some kind of Yang-Mills field polarisation tensor of the vacuum. In the 
electromagnetic case (Kalinowski 1982) (G = U(1)) we define the electromagnetic 
polarisation tensor of the vacuum Mas induced by the skewsymmetric part of the 
metric such that 

(8.11) 

(L:B is analogous to Hap and H:@ to Fop).  
In the classical electrodynamics of continuous media (de Groot et a1 1972) or in 

nonlinear electrodynamics (Plebanski 1970) this tensor is usually defined. Here 
we can define the tensor M:P such that 

(8.12) 

where M:@ is the Yang-Mills field analogue of the electromagnetic polarisation tensor 
Map. It is easy to see that 

4rMZo = -K:p (8.13) 

Hap = Fap - 4vMap 

LZp = H:p - 47~M:p 
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(see (6.13)). Thus we get a geometrical interpretation of M:,  

Q:, (r) = 8 ~ : ,  (8.14) 
(M:, is of course the ad-type tensor defined on P ) .  Thus the Yang-Mills field 
polarisation induced by the skewsymmetric part of the metric Y A B  is the torsion in 
the additional dimensions. This is in very good accordance with results from 
Kalinowski (1981). The only difference is that there the Yang-Mills field polarisation 
has its origin from external sources and (8.13) plays the role of the Cartan equation 
in the Kaluza-Klein theory with torsion. But this is not all. The skewsymmetric part 
of the metric YAB also changes the Yang-Mills field Lagrangian 

(8.15) Z Y M  = -(lab/8x)[2(g[a”H:, ) ( g [ ”  ”]H&”) -L“’””H;”]. 

In (8.15) we have a new term 

- 2 h a b ( g [ a 5 ~ ~ : ,  ) ( g [ + ; , )  

which is an interaction between the skewon field and the Yang-Mills field. This term 
vanishes if the metric of space-time is symmetric and is always non-negative if the 
group G is compact. The second term in (8.15) is also a little different from in the 
classical Yang-Mills field Lagrangian. In the place of the symmetric tensor hab we 
now have the nonsymmetric tensor 

lab = h a b  f PKab, 

The skewsymmetric part of the metric induces also a source for the Yang-Mills field. 
In equation (8.5) we get a current ’ 

(8.16) 

This current vanishes if the metric is symmetric. This is completely different from in 
the classical Kaluza-Klein theory (see Kerner 1968, Cho 1975 and Kalinowski 1983). 
In the classical (symmetric) approach based on a symmetric metric on P one obtained 
the second Yang-Mills equation in the vacuum. Thus the nonsymmetric Kaluza-Klein 
theory, combining Moff at’s theory and the Yang-Mills (gauge field) theory, is stronger 
than the classical Kaluza-Klein approach combining general relativity and a gauge 
theory. In the nonsymmetric Kaluza-Klein theory there exist ‘interference effects’ 
between gravitation and gauge fields which are absent in the classical approach 
(neglecting the appearance of the cosmological constant which is a disadvantage of 
the theory and is possible to remove in some approaches (Kalinowski 1983)). These 
new ‘interference effects’ are the following. 

(i) The new term in the Yang-Mills Lagrangian 

(ii) The change in ;he classical part of the Yang-Mills field Lagrangian in replacing 

(iii) The existence of a Yang-Mills field polarisation of the vacuum M:, which 

(iv) The additional term in the Kerner-Wong equation (equation of motion for 

hab by labe 

has geometrical interpretation as a torsion in the additional dimensions. 

the test particle in the gravitational and Yang-Mills fields) 
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(v) The existence of the cosmological constant p ( p )  with asymptotic behaviour 
for large p 

p ( p )  -constant/p2. 

Due to these five fundamental 'interference effects' we get other effects. 
gauge 

(i) The new energy-momentum tensor Tap with zero trace. 
(ii) Sources for Yang-Mills fields the current J"". 

All of these 'interference effects' vanish if the metric of p becomes symmetric. In 
this case we get classical Kaluza-Klein theory. 

9. Special cases 

Let us consider some special cases of the theory. First of all let gap be symmetric and 
15, # fba .  In this case we are able to solve equation (8.8) and we get: 

L& = h "'l,dH&. (9.1) 

~ Y M =  (1/8r)(hbd +p2K'&d)Hbw"Hd,, (9.2) 

9 y M =  (1/8r)h,b(H"Hb -L"p"H~, )  (9.3) 

g,pgYFL;a + ga,g@'L;, = 2g,,gwyH&. 

The Yang-Mills Lagrangian takes the form 

where KCd = hCe& Let us suppose that lab = h5b and gap f gpa ; in this case we have 

where H" = g[F"lH:v and the relationship between Lzp and HZp is the following 

(9.4) 

Now there is not mixing in the gauge indices (not mixing of 'colour charges'). In the 
first special case we are able to calculate the polarisation tensor MzP and we get 

k f z p  = ( 1 / 4 ~ ) ( S :  - h5'lCd)H$. (9.5) 

In the first case we are able to make the cosmological constant as small as we need. 
In the second case we get the classical result with enormous cosmological constant. 
If G = U ( l )  we get the results from Kalinowski (1983) 

where 

gwPgY@H,P + g a d % ,  = 2ga,gPYF,, (9.7) 
and we do not obtain the cosmological constant (U(1) is abelian). 
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